

Product Description

TVN V101 Wafer Type Butterfly valve construction is formed with the centered disc rotating inside the valve body 90 degrees. With the actuation type, the flow of the fluid can be stopped, regulated or started. In a wafer connection, the valve is installed between the pipe flanges and tightened to its place with the bolts for the pipe flanges.

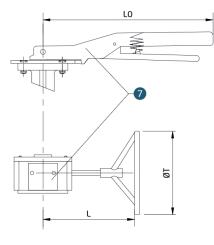
Technical Data				
Size range	DN40 - DN400			
Pressure range	PN 10-16 / Class 150			
Temperature	EPDM: -10°C to +80 °C NBR - 10°C to + 60 °C VITON -10°C to + 120°C			
Design	EN 593			
Face to face	EN 558 Series 20			
Connection	Wafer Type ISO 7005-1 EN 1092-1			
Coating	Electrostatic Powder Epoxy / Spray Epoxy			
Testing	EN 12266-1			
Marking	EN 19			
	Hand Lever			
	Gearbox			
Operation	Pneumatic Actuator (Single/Double Acting)			
	Electrical Actuator Quarter Turn/Modulating			

Application Range

- **HVAC Systems**
- **Pumping Stations**
- **Water Treatment Plants**
- Reservoirs and Tanks
- Irrigation
- **Industrial Applications**

Related Products

- V208 Wafer Swing Check Valve
- V209 Dual Check Valve
- V851 Y-Strainer
- V651 Rubber Expansion Joint

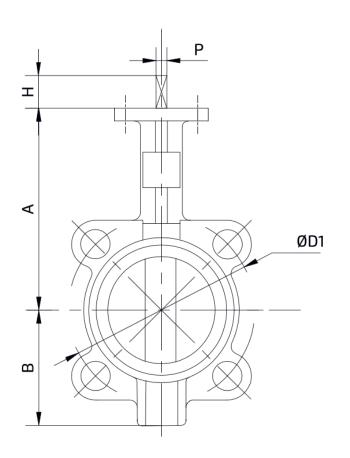


Product Features

- V101 type is with Nickel Plated Ductile Iron Disc
- GG25 Cast Iron Body (GGG40 Ductile Iron is optional)
- EPDM sealing/sleeve/gasket is by deafult. Different sealing materials are available
- With its compact design saves space, light weight, easy to install and budget friendly
- Even the disc is located within the flow section, with the precisely calculated disc design pressure loss is kept at minimum
- Machined disc ensures lower and regular torque
- Fully coated body avoids corrosion
- Standard version is with hand lever. With the intermediary lock positions on the lever, possible to fix the on desired position
- With ISO5211 top flange, direct mounting of gearbox, pneumatic or electric actuator is possible without any need for additional parts
- Bi-directional use, tight sealing in both ways
- Donot need any maintenance, easy to make spare part replacements
- Anti blow-out stem allows safety during operation
- No need for additional gaskets for installation on the pipeline
- With its long neck design, suitable for insulation application
- Cannot be used as an end of line valve
- Hydrostatic test pressure for seat: PN x 1.1, for shell: PN x 1.5 according to EN 12266-1.

Material List

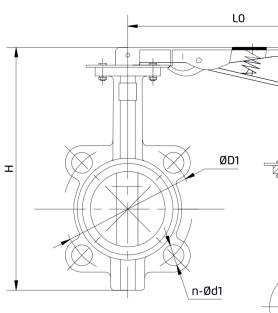
No	Part	Material
1	Body	GG25 / GGG40
2	Seat	EPDM / NBR / VITON
3	Stem	AISI 420 Stainless Steel
4	Disc	GGG40 Nickel Plated
5	Bushing	PTFE
6	O-Ring	NBR
7	Lever	Aluminium





Dimensions Table

						Тор			Flange PCD-D1				
MM	A	В	H	Р	С	Flange ISO 5211	LO	Т	L	PN10	PN16	JIS 10K	150LB
40	125	68	30	9	33	F05	215	137	150	110	110	105	99.5
50	129	73	30	9	42	F05	215	137	150	125	125	120	120.5
65	137	82	30	9	44.7	F05	215	137	150	145	145	140	140
80	144	95	30	9	45.2	F05	215	137	150	160	160	150	152.5
100	163	109	30	11	52.1	F07	260	137	150	180	180	175	190.5
125	179	125	30	14	54.4	F07	260	137	150	210	210	210	216
150	198	144	30	14	55.8	F07	260	137	150	240	240	240	241.5
200	237	173	35	17	60.6	F10	355	269	207	295	295	290	298.5
250	281	211	35	22	65.6	F10	355	269	207	350	355	355	362
300	318	244	35	22	76.9	F10	355	269	207	400	410	400	432



Eco Type Wafer Butterfly Valve Material List & Dimensions Table

No	Part	Material		
1	Body	GG25 Cast Iron		
2	Seat	EPDM		
3	Stem	Carbon Steel		
4	Disc	GGG40 Ductile Iron		
5	Pin	Carbon Steel		
6	Bushing	Polymer		
7	Lever	GG25 Cast Iron		

	5
	4
	3
	2
	1
→	

DN		6 10		Flange	PCD-D1
DN	Ξ	C	LO	PN16	PN10
50	235	39	210	125	125
65	260	43	210	145	145
80	280	43	210	160	160
100	315	48	210	180	180
125	340	50	235	210	210
150	375	51.5	235	240	240
200	445	57	235	295	295

V101

WAFER **BUTTERFLY VALVE**

ASSEMBLY INSTRUCTIONS

1- Move the two flanges with enough distance from the network so that the valve slides smoothly without damaging the lips of the elastic ring.

The butterfly will be in half-open position with no projection outside the valve width.

- 2- Centre the valve with the four screws/ties (two upper and two lower) without tightening them. Test the opening and closing of the butterfly to ensure its operation. Place the butterfly in perfectly centered position and open taking care not to damage its periphery. Tighten the screws/ties to fix the position of the BV.
- 3- Tighten the nuts until there is metal-metal contact between the body of the BV and the flanges of the network. Tighten the screws/ties "diagonally" and progressively. The tightening torque must be adequate to make metal-metal contact and less than the resistance capacity of the screw/tie.

Troubleshooting

Symptom	Possible cause	Resolution		
Valve would not rotate	Actuator has failed	Replace or repair		
Valve would not rotate	Valve packed with debris	Flush or clean valve to remove debris		
Valve leaking	Valve not fully closed	Close valve		
Valve leaking	Debris trapped in valve	Cycle and flush (with valve open) to remove debris		
Valve leaking	Seat is damaged	Replace valve		
Jerky operation	Debris trapped in valve	Cycle and flush (with valve open) to remove debris		
Jerky operation	Air supply actuator inadequate	Increase air supply pressure and/or volume		

Storage

When valves are to be stored for some time, (2 months or more) before being fitted, storage should be in the original delivery crates or cases

Storage Conditions

The valves should be stored off the ground in a clean, dry indoor area. Protect the valve from temperature and humidity extremes, and exposure to excessive dust, moisture, vibration, deformations, sunlight and ozone.

Temperature: storage temperature below 25°C, above 0°C preferable below 15°C.

Humidity: storage conditions should be such that condensation does not occur, store in a dry environment. Maximal 50% relative humidity.

Light: valve rubbers should be protected from light, in particular direct sunlight or strong artificial light with high ultra violet. Ozone: storage rooms should not contain any equipment generating ozone. E.g. lamps, electric motors.

Valve Installation

The valves are bi-directional and can be fitted in either direction relative to the flow. The valve will control flow equally in either direction. The recommended installation position is shaft horizontal and the lower disc edge opening downstream (especially for slurry service and media with a tendency for sedimentation). For optimum valve control and smooth performance, it is recommended to have 10 to 20 pipe diameters of straight run inlet piping and 3 to 5 pipe diameters straight outlet piping.

Do not use the valve as a crow-bar to spread the flanges, this might lead to damage to the flange area and/or damage to the O-ring sealing.

